/***************************************************************************** * mc.c: h264 encoder library (Motion Compensation) ***************************************************************************** * Copyright (C) 2003-2008 x264 project * * Authors: Laurent Aimar * Loren Merritt * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111, USA. *****************************************************************************/ #include "common.h" #ifdef HAVE_MMX #include "x86/mc.h" #endif #ifdef ARCH_PPC #include "ppc/mc.h" #endif static inline void pixel_avg( uint8_t *dst, int i_dst_stride, uint8_t *src1, int i_src1_stride, uint8_t *src2, int i_src2_stride, int i_width, int i_height ) { int x, y; for( y = 0; y < i_height; y++ ) { for( x = 0; x < i_width; x++ ) { dst[x] = ( src1[x] + src2[x] + 1 ) >> 1; } dst += i_dst_stride; src1 += i_src1_stride; src2 += i_src2_stride; } } static inline void pixel_avg_wxh( uint8_t *dst, int i_dst, uint8_t *src1, int i_src1, uint8_t *src2, int i_src2, int width, int height ) { int x, y; for( y = 0; y < height; y++ ) { for( x = 0; x < width; x++ ) { dst[x] = ( src1[x] + src2[x] + 1 ) >> 1; } src1 += i_src1; src2 += i_src2; dst += i_dst; } } /* Implicit weighted bipred only: * assumes log2_denom = 5, offset = 0, weight1 + weight2 = 64 */ #define op_scale2(x) dst[x] = x264_clip_uint8( (src1[x]*i_weight1 + src2[x]*i_weight2 + (1<<5)) >> 6 ) static inline void pixel_avg_weight_wxh( uint8_t *dst, int i_dst, uint8_t *src1, int i_src1, uint8_t *src2, int i_src2, int width, int height, int i_weight1 ) { int y; const int i_weight2 = 64 - i_weight1; for( y = 0; y> 5); buf[x+2] = v; } for( x=0; x> 10); for( x=0; x> 5); dsth += stride; dstv += stride; dstc += stride; src += stride; } x264_free(buf); } static const int hpel_ref0[16] = {0,1,1,1,0,1,1,1,2,3,3,3,0,1,1,1}; static const int hpel_ref1[16] = {0,0,0,0,2,2,3,2,2,2,3,2,2,2,3,2}; static void mc_luma( uint8_t *dst, int i_dst_stride, uint8_t *src[4], int i_src_stride, int mvx, int mvy, int i_width, int i_height ) { int qpel_idx = ((mvy&3)<<2) + (mvx&3); int offset = (mvy>>2)*i_src_stride + (mvx>>2); uint8_t *src1 = src[hpel_ref0[qpel_idx]] + offset + ((mvy&3) == 3) * i_src_stride; if( qpel_idx & 5 ) /* qpel interpolation needed */ { uint8_t *src2 = src[hpel_ref1[qpel_idx]] + offset + ((mvx&3) == 3); pixel_avg( dst, i_dst_stride, src1, i_src_stride, src2, i_src_stride, i_width, i_height ); } else { mc_copy( src1, i_src_stride, dst, i_dst_stride, i_width, i_height ); } } static uint8_t *get_ref( uint8_t *dst, int *i_dst_stride, uint8_t *src[4], int i_src_stride, int mvx, int mvy, int i_width, int i_height ) { int qpel_idx = ((mvy&3)<<2) + (mvx&3); int offset = (mvy>>2)*i_src_stride + (mvx>>2); uint8_t *src1 = src[hpel_ref0[qpel_idx]] + offset + ((mvy&3) == 3) * i_src_stride; if( qpel_idx & 5 ) /* qpel interpolation needed */ { uint8_t *src2 = src[hpel_ref1[qpel_idx]] + offset + ((mvx&3) == 3); pixel_avg( dst, *i_dst_stride, src1, i_src_stride, src2, i_src_stride, i_width, i_height ); return dst; } else { *i_dst_stride = i_src_stride; return src1; } } /* full chroma mc (ie until 1/8 pixel)*/ static void mc_chroma( uint8_t *dst, int i_dst_stride, uint8_t *src, int i_src_stride, int mvx, int mvy, int i_width, int i_height ) { uint8_t *srcp; int x, y; const int d8x = mvx&0x07; const int d8y = mvy&0x07; const int cA = (8-d8x)*(8-d8y); const int cB = d8x *(8-d8y); const int cC = (8-d8x)*d8y; const int cD = d8x *d8y; src += (mvy >> 3) * i_src_stride + (mvx >> 3); srcp = &src[i_src_stride]; for( y = 0; y < i_height; y++ ) { for( x = 0; x < i_width; x++ ) { dst[x] = ( cA*src[x] + cB*src[x+1] + cC*srcp[x] + cD*srcp[x+1] + 32 ) >> 6; } dst += i_dst_stride; src = srcp; srcp += i_src_stride; } } #define MC_COPY(W) \ static void mc_copy_w##W( uint8_t *dst, int i_dst, uint8_t *src, int i_src, int i_height ) \ { \ mc_copy( src, i_src, dst, i_dst, W, i_height ); \ } MC_COPY( 16 ) MC_COPY( 8 ) MC_COPY( 4 ) static void plane_copy( uint8_t *dst, int i_dst, uint8_t *src, int i_src, int w, int h) { while( h-- ) { memcpy( dst, src, w ); dst += i_dst; src += i_src; } } static void prefetch_fenc_null( uint8_t *pix_y, int stride_y, uint8_t *pix_uv, int stride_uv, int mb_x ) {} static void prefetch_ref_null( uint8_t *pix, int stride, int parity ) {} static void memzero_aligned( void * dst, int n ) { memset( dst, 0, n ); } static void integral_init4h( uint16_t *sum, uint8_t *pix, int stride ) { int x, v = pix[0]+pix[1]+pix[2]+pix[3]; for( x=0; xplane[0]; int i_stride = frame->i_stride[0]; int i_height = frame->i_lines[0]; int i_width = frame->i_width[0]; int x, y; // duplicate last row and column so that their interpolation doesn't have to be special-cased for( y=0; ymc.memcpy_aligned( src+i_stride*i_height, src+i_stride*(i_height-1), i_width ); h->mc.frame_init_lowres_core( src, frame->lowres[0], frame->lowres[1], frame->lowres[2], frame->lowres[3], i_stride, frame->i_stride_lowres, frame->i_width_lowres, frame->i_lines_lowres ); x264_frame_expand_border_lowres( frame ); memset( frame->i_cost_est, -1, sizeof(frame->i_cost_est) ); for( x = 0; x < h->param.i_bframe + 2; x++ ) for( y = 0; y < h->param.i_bframe + 2; y++ ) frame->i_row_satds[y][x][0] = -1; for( y = 0; y <= !!h->param.i_bframe; y++ ) for( x = 0; x <= h->param.i_bframe; x++ ) frame->lowres_mvs[y][x][0][0] = 0x7FFF; } static void frame_init_lowres_core( uint8_t *src0, uint8_t *dst0, uint8_t *dsth, uint8_t *dstv, uint8_t *dstc, int src_stride, int dst_stride, int width, int height ) { int x,y; for( y=0; y>1)+((c+d+1)>>1)+1)>>1) dst0[x] = FILTER(src0[2*x ], src1[2*x ], src0[2*x+1], src1[2*x+1]); dsth[x] = FILTER(src0[2*x+1], src1[2*x+1], src0[2*x+2], src1[2*x+2]); dstv[x] = FILTER(src1[2*x ], src2[2*x ], src1[2*x+1], src2[2*x+1]); dstc[x] = FILTER(src1[2*x+1], src2[2*x+1], src1[2*x+2], src2[2*x+2]); #undef FILTER } src0 += src_stride*2; dst0 += dst_stride; dsth += dst_stride; dstv += dst_stride; dstc += dst_stride; } } void x264_mc_init( int cpu, x264_mc_functions_t *pf ) { pf->mc_luma = mc_luma; pf->get_ref = get_ref; pf->mc_chroma = mc_chroma; pf->avg[PIXEL_16x16]= pixel_avg_16x16; pf->avg[PIXEL_16x8] = pixel_avg_16x8; pf->avg[PIXEL_8x16] = pixel_avg_8x16; pf->avg[PIXEL_8x8] = pixel_avg_8x8; pf->avg[PIXEL_8x4] = pixel_avg_8x4; pf->avg[PIXEL_4x8] = pixel_avg_4x8; pf->avg[PIXEL_4x4] = pixel_avg_4x4; pf->avg[PIXEL_4x2] = pixel_avg_4x2; pf->avg[PIXEL_2x4] = pixel_avg_2x4; pf->avg[PIXEL_2x2] = pixel_avg_2x2; pf->copy_16x16_unaligned = mc_copy_w16; pf->copy[PIXEL_16x16] = mc_copy_w16; pf->copy[PIXEL_8x8] = mc_copy_w8; pf->copy[PIXEL_4x4] = mc_copy_w4; pf->plane_copy = plane_copy; pf->hpel_filter = hpel_filter; pf->prefetch_fenc = prefetch_fenc_null; pf->prefetch_ref = prefetch_ref_null; pf->memcpy_aligned = memcpy; pf->memzero_aligned = memzero_aligned; pf->frame_init_lowres_core = frame_init_lowres_core; pf->integral_init4h = integral_init4h; pf->integral_init8h = integral_init8h; pf->integral_init4v = integral_init4v; pf->integral_init8v = integral_init8v; #ifdef HAVE_MMX x264_mc_init_mmx( cpu, pf ); #endif #ifdef ARCH_PPC if( cpu&X264_CPU_ALTIVEC ) x264_mc_altivec_init( pf ); #endif } void x264_frame_filter( x264_t *h, x264_frame_t *frame, int mb_y, int b_end ) { const int b_interlaced = h->sh.b_mbaff; const int stride = frame->i_stride[0] << b_interlaced; const int width = frame->i_width[0]; int start = (mb_y*16 >> b_interlaced) - 8; // buffer = 4 for deblock + 3 for 6tap, rounded to 8 int height = ((b_end ? frame->i_lines[0] : mb_y*16) >> b_interlaced) + 8; int offs = start*stride - 8; // buffer = 3 for 6tap, aligned to 8 for simd int y; if( mb_y & b_interlaced ) return; for( y=0; y<=b_interlaced; y++, offs+=frame->i_stride[0] ) { h->mc.hpel_filter( frame->filtered[1] + offs, frame->filtered[2] + offs, frame->filtered[3] + offs, frame->plane[0] + offs, stride, width + 16, height - start ); } /* generate integral image: * frame->integral contains 2 planes. in the upper plane, each element is * the sum of an 8x8 pixel region with top-left corner on that point. * in the lower plane, 4x4 sums (needed only with --partitions p4x4). */ if( frame->integral ) { if( start < 0 ) { memset( frame->integral - PADV * stride - PADH, 0, stride * sizeof(uint16_t) ); start = -PADV; } if( b_end ) height += PADV-8; for( y = start; y < height; y++ ) { uint8_t *pix = frame->plane[0] + y * stride - PADH; uint16_t *sum8 = frame->integral + (y+1) * stride - PADH; uint16_t *sum4; if( h->frames.b_have_sub8x8_esa ) { h->mc.integral_init4h( sum8, pix, stride ); sum8 -= 8*stride; sum4 = sum8 + stride * (frame->i_lines[0] + PADV*2); if( y >= 8-PADV ) h->mc.integral_init4v( sum8, sum4, stride ); } else { h->mc.integral_init8h( sum8, pix, stride ); if( y >= 8-PADV ) h->mc.integral_init8v( sum8-8*stride, stride ); } } } }