/***************************************************************************** * macroblock.c: h264 encoder library ***************************************************************************** * Copyright (C) 2003 Laurent Aimar * $Id: macroblock.c,v 1.1 2004/06/03 19:27:08 fenrir Exp $ * * Authors: Laurent Aimar * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111, USA. *****************************************************************************/ #include "common/common.h" #include "macroblock.h" #define ZIG(i,y,x) level[i] = dct[x][y]; static inline void zigzag_scan_2x2_dc( int16_t level[4], int16_t dct[2][2] ) { ZIG(0,0,0) ZIG(1,0,1) ZIG(2,1,0) ZIG(3,1,1) } #undef ZIG /* (ref: JVT-B118) * x264_mb_decimate_score: given dct coeffs it returns a score to see if we could empty this dct coeffs * to 0 (low score means set it to null) * Used in inter macroblock (luma and chroma) * luma: for a 8x8 block: if score < 4 -> null * for the complete mb: if score < 6 -> null * chroma: for the complete mb: if score < 7 -> null */ static int x264_mb_decimate_score( int16_t *dct, int i_max ) { static const int i_ds_table4[16] = { 3,2,2,1,1,1,0,0,0,0,0,0,0,0,0,0 }; static const int i_ds_table8[64] = { 3,3,3,3,2,2,2,2,2,2,2,2,1,1,1,1, 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 }; const int *ds_table = (i_max == 64) ? i_ds_table8 : i_ds_table4; int i_score = 0; int idx = i_max - 1; while( idx >= 0 && dct[idx] == 0 ) idx--; while( idx >= 0 ) { int i_run; if( abs( dct[idx--] ) > 1 ) return 9; i_run = 0; while( idx >= 0 && dct[idx] == 0 ) { idx--; i_run++; } i_score += ds_table[i_run]; } return i_score; } void x264_mb_encode_i4x4( x264_t *h, int idx, int i_qscale ) { int x = 4 * block_idx_x[idx]; int y = 4 * block_idx_y[idx]; uint8_t *p_src = &h->mb.pic.p_fenc[0][x+y*FENC_STRIDE]; uint8_t *p_dst = &h->mb.pic.p_fdec[0][x+y*FDEC_STRIDE]; DECLARE_ALIGNED_16( int16_t dct4x4[4][4] ); if( h->mb.b_lossless ) { h->zigzagf.sub_4x4( h->dct.luma4x4[idx], p_src, p_dst ); return; } h->dctf.sub4x4_dct( dct4x4, p_src, p_dst ); if( h->mb.b_trellis ) x264_quant_4x4_trellis( h, dct4x4, CQM_4IY, i_qscale, DCT_LUMA_4x4, 1 ); else h->quantf.quant_4x4( dct4x4, h->quant4_mf[CQM_4IY][i_qscale], h->quant4_bias[CQM_4IY][i_qscale] ); h->zigzagf.scan_4x4( h->dct.luma4x4[idx], dct4x4 ); h->quantf.dequant_4x4( dct4x4, h->dequant4_mf[CQM_4IY], i_qscale ); /* output samples to fdec */ h->dctf.add4x4_idct( p_dst, dct4x4 ); } void x264_mb_encode_i8x8( x264_t *h, int idx, int i_qscale ) { int x = 8 * (idx&1); int y = 8 * (idx>>1); uint8_t *p_src = &h->mb.pic.p_fenc[0][x+y*FENC_STRIDE]; uint8_t *p_dst = &h->mb.pic.p_fdec[0][x+y*FDEC_STRIDE]; DECLARE_ALIGNED_16( int16_t dct8x8[8][8] ); h->dctf.sub8x8_dct8( dct8x8, p_src, p_dst ); if( h->mb.b_trellis ) x264_quant_8x8_trellis( h, dct8x8, CQM_8IY, i_qscale, 1 ); else h->quantf.quant_8x8( dct8x8, h->quant8_mf[CQM_8IY][i_qscale], h->quant8_bias[CQM_8IY][i_qscale] ); h->zigzagf.scan_8x8( h->dct.luma8x8[idx], dct8x8 ); h->quantf.dequant_8x8( dct8x8, h->dequant8_mf[CQM_8IY], i_qscale ); h->dctf.add8x8_idct8( p_dst, dct8x8 ); } static void x264_mb_encode_i16x16( x264_t *h, int i_qscale ) { uint8_t *p_src = h->mb.pic.p_fenc[0]; uint8_t *p_dst = h->mb.pic.p_fdec[0]; DECLARE_ALIGNED_16( int16_t dct4x4[16+1][4][4] ); int i; if( h->mb.b_lossless ) { for( i = 0; i < 16; i++ ) { int oe = block_idx_x[i]*4 + block_idx_y[i]*4*FENC_STRIDE; int od = block_idx_x[i]*4 + block_idx_y[i]*4*FDEC_STRIDE; h->zigzagf.sub_4x4( h->dct.luma4x4[i], p_src+oe, p_dst+od ); dct4x4[0][block_idx_x[i]][block_idx_y[i]] = h->dct.luma4x4[i][0]; } h->zigzagf.scan_4x4( h->dct.luma16x16_dc, dct4x4[0] ); return; } h->dctf.sub16x16_dct( &dct4x4[1], p_src, p_dst ); for( i = 0; i < 16; i++ ) { /* copy dc coeff */ dct4x4[0][block_idx_y[i]][block_idx_x[i]] = dct4x4[1+i][0][0]; dct4x4[1+i][0][0] = 0; /* quant/scan/dequant */ if( h->mb.b_trellis ) x264_quant_4x4_trellis( h, dct4x4[1+i], CQM_4IY, i_qscale, DCT_LUMA_AC, 1 ); else h->quantf.quant_4x4( dct4x4[1+i], h->quant4_mf[CQM_4IY][i_qscale], h->quant4_bias[CQM_4IY][i_qscale] ); h->zigzagf.scan_4x4( h->dct.luma4x4[i], dct4x4[1+i] ); h->quantf.dequant_4x4( dct4x4[1+i], h->dequant4_mf[CQM_4IY], i_qscale ); } h->dctf.dct4x4dc( dct4x4[0] ); h->quantf.quant_4x4_dc( dct4x4[0], h->quant4_mf[CQM_4IY][i_qscale][0]>>1, h->quant4_bias[CQM_4IY][i_qscale][0]<<1 ); h->zigzagf.scan_4x4( h->dct.luma16x16_dc, dct4x4[0] ); /* output samples to fdec */ h->dctf.idct4x4dc( dct4x4[0] ); x264_mb_dequant_4x4_dc( dct4x4[0], h->dequant4_mf[CQM_4IY], i_qscale ); /* XXX not inversed */ /* calculate dct coeffs */ for( i = 0; i < 16; i++ ) { /* copy dc coeff */ dct4x4[1+i][0][0] = dct4x4[0][block_idx_y[i]][block_idx_x[i]]; } /* put pixels to fdec */ h->dctf.add16x16_idct( p_dst, &dct4x4[1] ); } void x264_mb_encode_8x8_chroma( x264_t *h, int b_inter, int i_qscale ) { int i, ch; int b_decimate = b_inter && (h->sh.i_type == SLICE_TYPE_B || h->param.analyse.b_dct_decimate); for( ch = 0; ch < 2; ch++ ) { uint8_t *p_src = h->mb.pic.p_fenc[1+ch]; uint8_t *p_dst = h->mb.pic.p_fdec[1+ch]; int i_decimate_score = 0; DECLARE_ALIGNED_16( int16_t dct2x2[2][2] ); DECLARE_ALIGNED_16( int16_t dct4x4[4][4][4] ); if( h->mb.b_lossless ) { for( i = 0; i < 4; i++ ) { int oe = block_idx_x[i]*4 + block_idx_y[i]*4*FENC_STRIDE; int od = block_idx_x[i]*4 + block_idx_y[i]*4*FDEC_STRIDE; h->zigzagf.sub_4x4( h->dct.luma4x4[16+i+ch*4], p_src+oe, p_dst+od ); h->dct.chroma_dc[ch][i] = h->dct.luma4x4[16+i+ch*4][0]; } continue; } h->dctf.sub8x8_dct( dct4x4, p_src, p_dst ); /* calculate dct coeffs */ for( i = 0; i < 4; i++ ) { /* copy dc coeff */ dct2x2[block_idx_y[i]][block_idx_x[i]] = dct4x4[i][0][0]; dct4x4[i][0][0] = 0; /* no trellis; it doesn't seem to help chroma noticeably */ h->quantf.quant_4x4( dct4x4[i], h->quant4_mf[CQM_4IC+b_inter][i_qscale], h->quant4_bias[CQM_4IC+b_inter][i_qscale] ); h->zigzagf.scan_4x4( h->dct.luma4x4[16+i+ch*4], dct4x4[i] ); if( b_decimate ) { i_decimate_score += x264_mb_decimate_score( h->dct.luma4x4[16+i+ch*4]+1, 15 ); } } h->dctf.dct2x2dc( dct2x2 ); h->quantf.quant_2x2_dc( dct2x2, h->quant4_mf[CQM_4IC+b_inter][i_qscale][0]>>1, h->quant4_bias[CQM_4IC+b_inter][i_qscale][0]<<1 ); zigzag_scan_2x2_dc( h->dct.chroma_dc[ch], dct2x2 ); /* output samples to fdec */ h->dctf.idct2x2dc( dct2x2 ); x264_mb_dequant_2x2_dc( dct2x2, h->dequant4_mf[CQM_4IC + b_inter], i_qscale ); /* XXX not inversed */ if( b_decimate && i_decimate_score < 7 ) { /* Near null chroma 8x8 block so make it null (bits saving) */ memset( &h->dct.luma4x4[16+ch*4], 0, 4 * sizeof( *h->dct.luma4x4 ) ); if( !array_non_zero( dct2x2 ) ) continue; memset( dct4x4, 0, sizeof( dct4x4 ) ); } else { for( i = 0; i < 4; i++ ) h->quantf.dequant_4x4( dct4x4[i], h->dequant4_mf[CQM_4IC + b_inter], i_qscale ); } for( i = 0; i < 4; i++ ) dct4x4[i][0][0] = dct2x2[0][i]; h->dctf.add8x8_idct( p_dst, dct4x4 ); } /* coded block pattern */ h->mb.i_cbp_chroma = 0; for( i = 0; i < 8; i++ ) { int nz = array_non_zero( h->dct.luma4x4[16+i] ); h->mb.cache.non_zero_count[x264_scan8[16+i]] = nz; h->mb.i_cbp_chroma |= nz; } if( h->mb.i_cbp_chroma ) h->mb.i_cbp_chroma = 2; /* dc+ac (we can't do only ac) */ else if( array_non_zero( h->dct.chroma_dc ) ) h->mb.i_cbp_chroma = 1; /* dc only */ } static void x264_macroblock_encode_skip( x264_t *h ) { int i; h->mb.i_cbp_luma = 0x00; h->mb.i_cbp_chroma = 0x00; for( i = 0; i < 16+8; i++ ) { h->mb.cache.non_zero_count[x264_scan8[i]] = 0; } /* store cbp */ h->mb.cbp[h->mb.i_mb_xy] = 0; } /***************************************************************************** * x264_macroblock_encode_pskip: * Encode an already marked skip block *****************************************************************************/ void x264_macroblock_encode_pskip( x264_t *h ) { const int mvx = x264_clip3( h->mb.cache.mv[0][x264_scan8[0]][0], h->mb.mv_min[0], h->mb.mv_max[0] ); const int mvy = x264_clip3( h->mb.cache.mv[0][x264_scan8[0]][1], h->mb.mv_min[1], h->mb.mv_max[1] ); /* don't do pskip motion compensation if it was already done in macroblock_analyse */ if( !h->mb.b_skip_pbskip_mc ) { h->mc.mc_luma( h->mb.pic.p_fdec[0], FDEC_STRIDE, h->mb.pic.p_fref[0][0], h->mb.pic.i_stride[0], mvx, mvy, 16, 16 ); h->mc.mc_chroma( h->mb.pic.p_fdec[1], FDEC_STRIDE, h->mb.pic.p_fref[0][0][4], h->mb.pic.i_stride[1], mvx, mvy, 8, 8 ); h->mc.mc_chroma( h->mb.pic.p_fdec[2], FDEC_STRIDE, h->mb.pic.p_fref[0][0][5], h->mb.pic.i_stride[2], mvx, mvy, 8, 8 ); } x264_macroblock_encode_skip( h ); } /***************************************************************************** * x264_macroblock_encode: *****************************************************************************/ void x264_macroblock_encode( x264_t *h ) { int i_cbp_dc = 0; int i_qp = h->mb.i_qp; int b_decimate = h->sh.i_type == SLICE_TYPE_B || h->param.analyse.b_dct_decimate; int b_force_no_skip = 0; int i,j,idx; uint8_t nnz8x8[4] = {1,1,1,1}; if( h->sh.b_mbaff && h->mb.i_mb_xy == h->sh.i_first_mb + h->mb.i_mb_stride && IS_SKIP(h->mb.type[h->sh.i_first_mb]) ) { /* The first skip is predicted to be a frame mb pair. * We don't yet support the aff part of mbaff, so force it to non-skip * so that we can pick the aff flag. */ b_force_no_skip = 1; if( IS_SKIP(h->mb.i_type) ) { if( h->mb.i_type == P_SKIP ) h->mb.i_type = P_L0; else if( h->mb.i_type == B_SKIP ) h->mb.i_type = B_DIRECT; } } if( h->mb.i_type == P_SKIP ) { /* A bit special */ x264_macroblock_encode_pskip( h ); return; } if( h->mb.i_type == B_SKIP ) { /* don't do bskip motion compensation if it was already done in macroblock_analyse */ if( !h->mb.b_skip_pbskip_mc ) x264_mb_mc( h ); x264_macroblock_encode_skip( h ); return; } if( h->mb.i_type == I_16x16 ) { const int i_mode = h->mb.i_intra16x16_pred_mode; h->mb.b_transform_8x8 = 0; /* do the right prediction */ h->predict_16x16[i_mode]( h->mb.pic.p_fdec[0] ); /* encode the 16x16 macroblock */ x264_mb_encode_i16x16( h, i_qp ); } else if( h->mb.i_type == I_8x8 ) { DECLARE_ALIGNED_16( uint8_t edge[33] ); h->mb.b_transform_8x8 = 1; /* If we already encoded 3 of the 4 i8x8 blocks, we don't have to do them again. */ if( h->mb.i_skip_intra ) { h->mc.copy[PIXEL_16x16]( h->mb.pic.p_fdec[0], FDEC_STRIDE, h->mb.pic.i8x8_fdec_buf, 16, 16 ); /* In RD mode, restore the now-overwritten DCT data. */ if( h->mb.i_skip_intra == 2 ) h->mc.memcpy_aligned( h->dct.luma8x8, h->mb.pic.i8x8_dct_buf, sizeof(h->mb.pic.i8x8_dct_buf) ); } for( i = h->mb.i_skip_intra ? 3 : 0 ; i < 4; i++ ) { uint8_t *p_dst = &h->mb.pic.p_fdec[0][8 * (i&1) + 8 * (i>>1) * FDEC_STRIDE]; int i_mode = h->mb.cache.intra4x4_pred_mode[x264_scan8[4*i]]; x264_predict_8x8_filter( p_dst, edge, h->mb.i_neighbour8[i], x264_pred_i4x4_neighbors[i_mode] ); h->predict_8x8[i_mode]( p_dst, edge ); x264_mb_encode_i8x8( h, i, i_qp ); } for( i = 0; i < 4; i++ ) nnz8x8[i] = array_non_zero( h->dct.luma8x8[i] ); } else if( h->mb.i_type == I_4x4 ) { h->mb.b_transform_8x8 = 0; /* If we already encoded 15 of the 16 i4x4 blocks, we don't have to do them again. */ if( h->mb.i_skip_intra ) { h->mc.copy[PIXEL_16x16]( h->mb.pic.p_fdec[0], FDEC_STRIDE, h->mb.pic.i4x4_fdec_buf, 16, 16 ); /* In RD mode, restore the now-overwritten DCT data. */ if( h->mb.i_skip_intra == 2 ) h->mc.memcpy_aligned( h->dct.luma4x4, h->mb.pic.i4x4_dct_buf, sizeof(h->mb.pic.i4x4_dct_buf) ); } for( i = h->mb.i_skip_intra ? 15 : 0 ; i < 16; i++ ) { uint8_t *p_dst = &h->mb.pic.p_fdec[0][4 * block_idx_x[i] + 4 * block_idx_y[i] * FDEC_STRIDE]; int i_mode = h->mb.cache.intra4x4_pred_mode[x264_scan8[i]]; if( (h->mb.i_neighbour4[i] & (MB_TOPRIGHT|MB_TOP)) == MB_TOP ) /* emulate missing topright samples */ *(uint32_t*) &p_dst[4-FDEC_STRIDE] = p_dst[3-FDEC_STRIDE] * 0x01010101U; h->predict_4x4[i_mode]( p_dst ); x264_mb_encode_i4x4( h, i, i_qp ); } } else /* Inter MB */ { int i8x8, i4x4; int i_decimate_mb = 0; /* Motion compensation */ x264_mb_mc( h ); if( h->mb.b_lossless ) { for( i4x4 = 0; i4x4 < 16; i4x4++ ) { int x = 4*block_idx_x[i4x4]; int y = 4*block_idx_y[i4x4]; h->zigzagf.sub_4x4( h->dct.luma4x4[i4x4], h->mb.pic.p_fenc[0]+x+y*FENC_STRIDE, h->mb.pic.p_fdec[0]+x+y*FDEC_STRIDE ); } } else if( h->mb.b_transform_8x8 ) { DECLARE_ALIGNED_16( int16_t dct8x8[4][8][8] ); b_decimate &= !h->mb.b_trellis; // 8x8 trellis is inherently optimal decimation h->dctf.sub16x16_dct8( dct8x8, h->mb.pic.p_fenc[0], h->mb.pic.p_fdec[0] ); for( idx = 0; idx < 4; idx++ ) { if( h->mb.b_noise_reduction ) x264_denoise_dct( h, (int16_t*)dct8x8[idx] ); if( h->mb.b_trellis ) x264_quant_8x8_trellis( h, dct8x8[idx], CQM_8PY, i_qp, 0 ); else h->quantf.quant_8x8( dct8x8[idx], h->quant8_mf[CQM_8PY][i_qp], h->quant8_bias[CQM_8PY][i_qp] ); h->zigzagf.scan_8x8( h->dct.luma8x8[idx], dct8x8[idx] ); if( b_decimate ) { int i_decimate_8x8 = x264_mb_decimate_score( h->dct.luma8x8[idx], 64 ); i_decimate_mb += i_decimate_8x8; if( i_decimate_8x8 < 4 ) nnz8x8[idx] = 0; } else nnz8x8[idx] = array_non_zero( dct8x8[idx] ); } if( i_decimate_mb < 6 && b_decimate ) *(uint32_t*)nnz8x8 = 0; else { for( idx = 0; idx < 4; idx++ ) if( nnz8x8[idx] ) { h->quantf.dequant_8x8( dct8x8[idx], h->dequant8_mf[CQM_8PY], i_qp ); h->dctf.add8x8_idct8( &h->mb.pic.p_fdec[0][(idx&1)*8 + (idx>>1)*8*FDEC_STRIDE], dct8x8[idx] ); } } } else { DECLARE_ALIGNED_16( int16_t dct4x4[16][4][4] ); h->dctf.sub16x16_dct( dct4x4, h->mb.pic.p_fenc[0], h->mb.pic.p_fdec[0] ); for( i8x8 = 0; i8x8 < 4; i8x8++ ) { int i_decimate_8x8; /* encode one 4x4 block */ i_decimate_8x8 = 0; for( i4x4 = 0; i4x4 < 4; i4x4++ ) { idx = i8x8 * 4 + i4x4; if( h->mb.b_noise_reduction ) x264_denoise_dct( h, (int16_t*)dct4x4[idx] ); if( h->mb.b_trellis ) x264_quant_4x4_trellis( h, dct4x4[idx], CQM_4PY, i_qp, DCT_LUMA_4x4, 0 ); else h->quantf.quant_4x4( dct4x4[idx], h->quant4_mf[CQM_4PY][i_qp], h->quant4_bias[CQM_4PY][i_qp] ); h->zigzagf.scan_4x4( h->dct.luma4x4[idx], dct4x4[idx] ); if( b_decimate ) i_decimate_8x8 += x264_mb_decimate_score( h->dct.luma4x4[idx], 16 ); } /* decimate this 8x8 block */ i_decimate_mb += i_decimate_8x8; if( i_decimate_8x8 < 4 && b_decimate ) nnz8x8[i8x8] = 0; } if( i_decimate_mb < 6 && b_decimate ) *(uint32_t*)nnz8x8 = 0; else { for( i8x8 = 0; i8x8 < 4; i8x8++ ) if( nnz8x8[i8x8] ) { for( i = 0; i < 4; i++ ) h->quantf.dequant_4x4( dct4x4[i8x8*4+i], h->dequant4_mf[CQM_4PY], i_qp ); h->dctf.add8x8_idct( &h->mb.pic.p_fdec[0][(i8x8&1)*8 + (i8x8>>1)*8*FDEC_STRIDE], &dct4x4[i8x8*4] ); } } } } /* encode chroma */ if( IS_INTRA( h->mb.i_type ) ) { const int i_mode = h->mb.i_chroma_pred_mode; h->predict_8x8c[i_mode]( h->mb.pic.p_fdec[1] ); h->predict_8x8c[i_mode]( h->mb.pic.p_fdec[2] ); } /* encode the 8x8 blocks */ x264_mb_encode_8x8_chroma( h, !IS_INTRA( h->mb.i_type ), h->mb.i_chroma_qp ); /* coded block pattern and non_zero_count */ h->mb.i_cbp_luma = 0x00; if( h->mb.i_type == I_16x16 ) { for( i = 0; i < 16; i++ ) { int nz = array_non_zero( h->dct.luma4x4[i] ); h->mb.cache.non_zero_count[x264_scan8[i]] = nz; h->mb.i_cbp_luma |= nz; } h->mb.i_cbp_luma *= 0xf; } else { for( i = 0; i < 4; i++) { if(!nnz8x8[i]) for( j = 0; j < 4; j++ ) h->mb.cache.non_zero_count[x264_scan8[j+i*4]] = 0; else if( h->mb.b_transform_8x8 ) { int nz = nnz8x8[i]; for( j = 0; j < 4; j++ ) h->mb.cache.non_zero_count[x264_scan8[j+4*i]] = nz; h->mb.i_cbp_luma |= nz << i; } else { for( j = 0; j < 4; j++ ) { int nz = array_non_zero( h->dct.luma4x4[j+i*4] ); h->mb.cache.non_zero_count[x264_scan8[j+i*4]] = nz; h->mb.i_cbp_luma |= nz << i; } } } } if( h->param.b_cabac ) { i_cbp_dc = ( h->mb.i_type == I_16x16 && array_non_zero( h->dct.luma16x16_dc ) ) | array_non_zero( h->dct.chroma_dc[0] ) << 1 | array_non_zero( h->dct.chroma_dc[1] ) << 2; } /* store cbp */ h->mb.cbp[h->mb.i_mb_xy] = (i_cbp_dc << 8) | (h->mb.i_cbp_chroma << 4) | h->mb.i_cbp_luma; /* Check for P_SKIP * XXX: in the me perhaps we should take x264_mb_predict_mv_pskip into account * (if multiple mv give same result)*/ if( !b_force_no_skip ) { if( h->mb.i_type == P_L0 && h->mb.i_partition == D_16x16 && h->mb.i_cbp_luma == 0x00 && h->mb.i_cbp_chroma == 0x00 && h->mb.cache.mv[0][x264_scan8[0]][0] == h->mb.cache.pskip_mv[0] && h->mb.cache.mv[0][x264_scan8[0]][1] == h->mb.cache.pskip_mv[1] && h->mb.cache.ref[0][x264_scan8[0]] == 0 ) { h->mb.i_type = P_SKIP; } /* Check for B_SKIP */ if( h->mb.i_type == B_DIRECT && h->mb.i_cbp_luma == 0x00 && h->mb.i_cbp_chroma== 0x00 ) { h->mb.i_type = B_SKIP; } } } /***************************************************************************** * x264_macroblock_probe_skip: * Check if the current MB could be encoded as a [PB]_SKIP (it supposes you use * the previous QP *****************************************************************************/ int x264_macroblock_probe_skip( x264_t *h, const int b_bidir ) { DECLARE_ALIGNED_16( int16_t dct4x4[16][4][4] ); DECLARE_ALIGNED_16( int16_t dct2x2[2][2] ); DECLARE_ALIGNED_16( int16_t dctscan[16] ); int i_qp = h->mb.i_qp; int mvp[2]; int ch; int i8x8, i4x4; int i_decimate_mb; if( !b_bidir ) { /* Get the MV */ mvp[0] = x264_clip3( h->mb.cache.pskip_mv[0], h->mb.mv_min[0], h->mb.mv_max[0] ); mvp[1] = x264_clip3( h->mb.cache.pskip_mv[1], h->mb.mv_min[1], h->mb.mv_max[1] ); /* Motion compensation */ h->mc.mc_luma( h->mb.pic.p_fdec[0], FDEC_STRIDE, h->mb.pic.p_fref[0][0], h->mb.pic.i_stride[0], mvp[0], mvp[1], 16, 16 ); } /* get luma diff */ h->dctf.sub16x16_dct( dct4x4, h->mb.pic.p_fenc[0], h->mb.pic.p_fdec[0] ); for( i8x8 = 0, i_decimate_mb = 0; i8x8 < 4; i8x8++ ) { /* encode one 4x4 block */ for( i4x4 = 0; i4x4 < 4; i4x4++ ) { const int idx = i8x8 * 4 + i4x4; h->quantf.quant_4x4( dct4x4[idx], h->quant4_mf[CQM_4PY][i_qp], h->quant4_bias[CQM_4PY][i_qp] ); h->zigzagf.scan_4x4( dctscan, dct4x4[idx] ); i_decimate_mb += x264_mb_decimate_score( dctscan, 16 ); if( i_decimate_mb >= 6 ) return 0; } } /* encode chroma */ i_qp = h->mb.i_chroma_qp; for( ch = 0; ch < 2; ch++ ) { uint8_t *p_src = h->mb.pic.p_fenc[1+ch]; uint8_t *p_dst = h->mb.pic.p_fdec[1+ch]; if( !b_bidir ) { h->mc.mc_chroma( h->mb.pic.p_fdec[1+ch], FDEC_STRIDE, h->mb.pic.p_fref[0][0][4+ch], h->mb.pic.i_stride[1+ch], mvp[0], mvp[1], 8, 8 ); } h->dctf.sub8x8_dct( dct4x4, p_src, p_dst ); /* calculate dct DC */ dct2x2[0][0] = dct4x4[0][0][0]; dct2x2[0][1] = dct4x4[1][0][0]; dct2x2[1][0] = dct4x4[2][0][0]; dct2x2[1][1] = dct4x4[3][0][0]; h->dctf.dct2x2dc( dct2x2 ); h->quantf.quant_2x2_dc( dct2x2, h->quant4_mf[CQM_4PC][i_qp][0]>>1, h->quant4_bias[CQM_4PC][i_qp][0]<<1 ); if( *(uint64_t*)dct2x2 ) return 0; /* calculate dct coeffs */ for( i4x4 = 0, i_decimate_mb = 0; i4x4 < 4; i4x4++ ) { h->quantf.quant_4x4( dct4x4[i4x4], h->quant4_mf[CQM_4PC][i_qp], h->quant4_bias[CQM_4PC][i_qp] ); h->zigzagf.scan_4x4( dctscan, dct4x4[i4x4] ); i_decimate_mb += x264_mb_decimate_score( dctscan+1, 15 ); if( i_decimate_mb >= 7 ) return 0; } } h->mb.b_skip_pbskip_mc = 1; return 1; } /**************************************************************************** * DCT-domain noise reduction / adaptive deadzone * from libavcodec ****************************************************************************/ void x264_noise_reduction_update( x264_t *h ) { int cat, i; for( cat = 0; cat < 2; cat++ ) { int size = cat ? 64 : 16; const uint16_t *weight = cat ? x264_dct8_weight2_tab : x264_dct4_weight2_tab; if( h->nr_count[cat] > (cat ? (1<<16) : (1<<18)) ) { for( i = 0; i < size; i++ ) h->nr_residual_sum[cat][i] >>= 1; h->nr_count[cat] >>= 1; } for( i = 0; i < size; i++ ) h->nr_offset[cat][i] = ((uint64_t)h->param.analyse.i_noise_reduction * h->nr_count[cat] + h->nr_residual_sum[cat][i]/2) / ((uint64_t)h->nr_residual_sum[cat][i] * weight[i]/256 + 1); } } void x264_denoise_dct( x264_t *h, int16_t *dct ) { const int cat = h->mb.b_transform_8x8; int i; h->nr_count[cat]++; for( i = (cat ? 63 : 15); i >= 1; i-- ) { int level = dct[i]; if( level ) { if( level > 0 ) { h->nr_residual_sum[cat][i] += level; level -= h->nr_offset[cat][i]; if( level < 0 ) level = 0; } else { h->nr_residual_sum[cat][i] -= level; level += h->nr_offset[cat][i]; if( level > 0 ) level = 0; } dct[i] = level; } } } /***************************************************************************** * RD only; 4 calls to this do not make up for one macroblock_encode. * doesn't transform chroma dc. *****************************************************************************/ void x264_macroblock_encode_p8x8( x264_t *h, int i8 ) { int i_qp = h->mb.i_qp; uint8_t *p_fenc = h->mb.pic.p_fenc[0] + (i8&1)*8 + (i8>>1)*8*FENC_STRIDE; uint8_t *p_fdec = h->mb.pic.p_fdec[0] + (i8&1)*8 + (i8>>1)*8*FDEC_STRIDE; int b_decimate = h->sh.i_type == SLICE_TYPE_B || h->param.analyse.b_dct_decimate; int nnz8x8; int ch; x264_mb_mc_8x8( h, i8 ); if( h->mb.b_transform_8x8 ) { DECLARE_ALIGNED_16( int16_t dct8x8[8][8] ); h->dctf.sub8x8_dct8( dct8x8, p_fenc, p_fdec ); h->quantf.quant_8x8( dct8x8, h->quant8_mf[CQM_8PY][i_qp], h->quant8_bias[CQM_8PY][i_qp] ); h->zigzagf.scan_8x8( h->dct.luma8x8[i8], dct8x8 ); if( b_decimate ) nnz8x8 = 4 <= x264_mb_decimate_score( h->dct.luma8x8[i8], 64 ); else nnz8x8 = array_non_zero( dct8x8 ); if( nnz8x8 ) { h->quantf.dequant_8x8( dct8x8, h->dequant8_mf[CQM_8PY], i_qp ); h->dctf.add8x8_idct8( p_fdec, dct8x8 ); } } else { int i4; DECLARE_ALIGNED_16( int16_t dct4x4[4][4][4] ); h->dctf.sub8x8_dct( dct4x4, p_fenc, p_fdec ); h->quantf.quant_4x4( dct4x4[0], h->quant4_mf[CQM_4PY][i_qp], h->quant4_bias[CQM_4PY][i_qp] ); h->quantf.quant_4x4( dct4x4[1], h->quant4_mf[CQM_4PY][i_qp], h->quant4_bias[CQM_4PY][i_qp] ); h->quantf.quant_4x4( dct4x4[2], h->quant4_mf[CQM_4PY][i_qp], h->quant4_bias[CQM_4PY][i_qp] ); h->quantf.quant_4x4( dct4x4[3], h->quant4_mf[CQM_4PY][i_qp], h->quant4_bias[CQM_4PY][i_qp] ); for( i4 = 0; i4 < 4; i4++ ) h->zigzagf.scan_4x4( h->dct.luma4x4[i8*4+i4], dct4x4[i4] ); if( b_decimate ) { int i_decimate_8x8 = 0; for( i4 = 0; i4 < 4 && i_decimate_8x8 < 4; i4++ ) i_decimate_8x8 += x264_mb_decimate_score( h->dct.luma4x4[i8*4+i4], 16 ); nnz8x8 = 4 <= i_decimate_8x8; } else nnz8x8 = array_non_zero( dct4x4 ); if( nnz8x8 ) { for( i4 = 0; i4 < 4; i4++ ) h->quantf.dequant_4x4( dct4x4[i4], h->dequant4_mf[CQM_4PY], i_qp ); h->dctf.add8x8_idct( p_fdec, dct4x4 ); } } i_qp = h->mb.i_chroma_qp; for( ch = 0; ch < 2; ch++ ) { DECLARE_ALIGNED_16( int16_t dct4x4[4][4] ); p_fenc = h->mb.pic.p_fenc[1+ch] + (i8&1)*4 + (i8>>1)*4*FENC_STRIDE; p_fdec = h->mb.pic.p_fdec[1+ch] + (i8&1)*4 + (i8>>1)*4*FDEC_STRIDE; h->dctf.sub4x4_dct( dct4x4, p_fenc, p_fdec ); h->quantf.quant_4x4( dct4x4, h->quant4_mf[CQM_4PC][i_qp], h->quant4_bias[CQM_4PC][i_qp] ); h->zigzagf.scan_4x4( h->dct.luma4x4[16+i8+ch*4], dct4x4 ); if( array_non_zero( dct4x4 ) ) { h->quantf.dequant_4x4( dct4x4, h->dequant4_mf[CQM_4PC], i_qp ); h->dctf.add4x4_idct( p_fdec, dct4x4 ); } } h->mb.i_cbp_luma &= ~(1 << i8); h->mb.i_cbp_luma |= nnz8x8 << i8; h->mb.i_cbp_chroma = 0x02; }