md5.h 5.34 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* md5.h - Declaration of functions and data types used for MD5 sum
   computing library functions.
   Copyright (C) 1995, 1996, 1999 Free Software Foundation, Inc.
   NOTE: The canonical source of this file is maintained with the GNU C
   Library.  Bugs can be reported to bug-glibc@prep.ai.mit.edu.

   This program is free software; you can redistribute it and/or modify it
   under the terms of the GNU General Public License as published by the
   Free Software Foundation; either version 2, or (at your option) any
   later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software Foundation,
19
   Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.  */
20

21 22
#ifndef LIBDVDREAD_MD5_H
#define LIBDVDREAD_MD5_H
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

#include <stdio.h>

#if defined HAVE_LIMITS_H || _LIBC
# include <limits.h>
#endif

/* The following contortions are an attempt to use the C preprocessor
   to determine an unsigned integral type that is 32 bits wide.  An
   alternative approach is to use autoconf's AC_CHECK_SIZEOF macro, but
   doing that would require that the configure script compile and *run*
   the resulting executable.  Locally running cross-compiled executables
   is usually not possible.  */

#ifdef _LIBC
# include <sys/types.h>
typedef u_int32_t md5_uint32;
#else
# if defined __STDC__ && __STDC__
#  define UINT_MAX_32_BITS 4294967295U
# else
#  define UINT_MAX_32_BITS 0xFFFFFFFF
# endif

/* If UINT_MAX isn't defined, assume it's a 32-bit type.
   This should be valid for all systems GNU cares about because
   that doesn't include 16-bit systems, and only modern systems
   (that certainly have <limits.h>) have 64+-bit integral types.  */

# ifndef UINT_MAX
#  define UINT_MAX UINT_MAX_32_BITS
# endif

# if UINT_MAX == UINT_MAX_32_BITS
57
typedef unsigned int md5_uint32;
58 59
# else
#  if USHRT_MAX == UINT_MAX_32_BITS
60
typedef unsigned short md5_uint32;
61 62
#  else
#   if ULONG_MAX == UINT_MAX_32_BITS
63
typedef unsigned long md5_uint32;
64
#   else
65 66 67
/* The following line is intended to evoke an error.
   Using #error is not portable enough.  */
"Cannot determine unsigned 32-bit data type."
68 69 70 71 72 73 74
#   endif
#  endif
# endif
#endif

#undef __P
#if defined (__STDC__) && __STDC__
75
#define __P(x) x
76
#else
77
#define __P(x) ()
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
#endif

/* Structure to save state of computation between the single steps.  */
struct md5_ctx
{
  md5_uint32 A;
  md5_uint32 B;
  md5_uint32 C;
  md5_uint32 D;

  md5_uint32 total[2];
  md5_uint32 buflen;
  char buffer[128];
};

/*
 * The following three functions are build up the low level used in
 * the functions `md5_stream' and `md5_buffer'.
 */

/* Initialize structure containing state of computation.
   (RFC 1321, 3.3: Step 3)  */
extern void md5_init_ctx __P ((struct md5_ctx *ctx));

/* Starting with the result of former calls of this function (or the
   initialization function update the context for the next LEN bytes
   starting at BUFFER.
   It is necessary that LEN is a multiple of 64!!! */
extern void md5_process_block __P ((const void *buffer, size_t len,
107
                                    struct md5_ctx *ctx));
108 109 110 111 112 113

/* Starting with the result of former calls of this function (or the
   initialization function update the context for the next LEN bytes
   starting at BUFFER.
   It is NOT required that LEN is a multiple of 64.  */
extern void md5_process_bytes __P ((const void *buffer, size_t len,
114
                                    struct md5_ctx *ctx));
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152

/* Process the remaining bytes in the buffer and put result from CTX
   in first 16 bytes following RESBUF.  The result is always in little
   endian byte order, so that a byte-wise output yields to the wanted
   ASCII representation of the message digest.

   IMPORTANT: On some systems it is required that RESBUF be correctly
   aligned for a 32 bits value.  */
extern void *md5_finish_ctx __P ((struct md5_ctx *ctx, void *resbuf));


/* Put result from CTX in first 16 bytes following RESBUF.  The result is
   always in little endian byte order, so that a byte-wise output yields
   to the wanted ASCII representation of the message digest.

   IMPORTANT: On some systems it is required that RESBUF is correctly
   aligned for a 32 bits value.  */
extern void *md5_read_ctx __P ((const struct md5_ctx *ctx, void *resbuf));


/* Compute MD5 message digest for bytes read from STREAM.  The
   resulting message digest number will be written into the 16 bytes
   beginning at RESBLOCK.  */
extern int md5_stream __P ((FILE *stream, void *resblock));

/* Compute MD5 message digest for LEN bytes beginning at BUFFER.  The
   result is always in little endian byte order, so that a byte-wise
   output yields to the wanted ASCII representation of the message
   digest.  */
extern void *md5_buffer __P ((const char *buffer, size_t len, void *resblock));

/* The following is from gnupg-1.0.2's cipher/bithelp.h.  */
/* Rotate a 32 bit integer by n bytes */
#if defined __GNUC__ && defined __i386__
static inline md5_uint32
rol(md5_uint32 x, int n)
{
  __asm__("roll %%cl,%0"
153 154
          :"=r" (x)
          :"0" (x),"c" (n));
155 156 157 158 159 160
  return x;
}
#else
# define rol(x,n) ( ((x) << (n)) | ((x) >> (32-(n))) )
#endif

161
#endif /* LIBDVDREAD_MD5_H */